If it's not what You are looking for type in the equation solver your own equation and let us solve it.
750-30t^2-60t=0
a = -30; b = -60; c = +750;
Δ = b2-4ac
Δ = -602-4·(-30)·750
Δ = 93600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{93600}=\sqrt{3600*26}=\sqrt{3600}*\sqrt{26}=60\sqrt{26}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60\sqrt{26}}{2*-30}=\frac{60-60\sqrt{26}}{-60} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60\sqrt{26}}{2*-30}=\frac{60+60\sqrt{26}}{-60} $
| 5x-4(4x+6)=101 | | 6(2-8v)=-132 | | 8.3+x=42.1 | | -3x-6(8x+3)=288 | | 14+6(x)=48 | | x+3.6= | | -3(-7b-7)+6=132 | | 2x-{2(x+4)+4=6x | | 2n+15=7;n=-4 | | x+2x-3=1 | | 4n-8=12;n=20 | | 56=23+c | | 3+2x=40 | | -3(3a-6)=9 | | 43+x=78 | | x+75=x+65=x+67 | | 3x+11=-14 | | x7+x=8 | | 13.7+x=20.4 | | x+61=x+52 | | 7+6x=1+4x | | 3x+23+7x-4+9x-6=180 | | X=12=4x+30+-2x+36 | | X+8=3+6x | | 3x+23+7x-4+9x-6=95 | | 255=5(8+6x)+7x | | d=653.5 | | 3x+1÷4=-2 | | X=20=3x+30 | | x+41=x+43=2x | | 7(3+3x)=147 | | 3(x+8)=x+4) |